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Abstract. We calculate the form factors F0 and F1 of B → π and V , A0, A1 and A2 of B → ρ transition
matrix elements by using the factorization formalism of perturbative QCD in the region 0 ≤ q2 ≤ M2

B/2.
In the limit of mπ/MB = 0, mρ/MB = 0, Mb/MB = 1 and (1 − x) � 1, the results show that F0 and A1

are of monopole type, V , A0 and A2 of dipole type, and F1 of a combination of monopole and dipole types
with dipole type dominating.

1 Introduction

CP-violation is one of the most important and mysteri-
ous phenomena in high energy physics, for which we have
only the KL → ππ decay [1] and the charge asymmetry in
the decay KL → π±l∓ν [2] for more than 30 years. The
mechanism of CP-violation through the complex phase of
the Cabibbo-Kobayashi-Maskawa (CKM) [3] three family
mixing matrix in the Weinberg-Salam model is presently
the standard model for CP-violation. The B meson sys-
tem offers many possibilities to investigate CP-violation
[4], and the B-factories in KEK and SLAC are under con-
struction for this purpose. In order to probe the CKM
model precisely, it is crucial to obtain the values of the
CKM matrix elements accurately from B meson decays.
For the decays involving b → c transition, we can apply the
heavy quark symmetry and it is possible to determine Vcb

reliably through the heavy quark effective theory (HQET)
[5]. However, for those involving b → u it is less likely that
the heavy quark symmetry applies, and the determination
of Vub has heavily relied on the models for the form factors.

The dynamical content of hadron decays is described
by Lorentz invariant form factors of current matrix el-
ements. The theoretical calculation of the form factors
involving b → u transition is a difficult task, since it is
concerned with the nonperturbative realm of QCD and
we cannot apply the heavy quark symmetry. Recently
there have been active investigations of the form factors
of B → π and B → ρ by using quark model, QCD sum
rule and lattice calculations [6]. CLEO has presented first
experimental results of the branching ratios of B → πlν
and B → ρlν [7], which are still model dependent.

In this paper we will calculate the form factors of
B → π (F0, F1) and B → ρ transitions (V , A0, A1,
A2) by using the method which Szczepaniak et al. em-
ployed for obtaining the B → π form factors [8]. This
method is based on the meson theory of Brodsky and
Lepage [9]. [8] noticed that in the case of a heavy me-

son decaying into two lighter mesons the large momentum
transfers are involved and the factorization formula of per-
turbative QCD (PQCD) for exclusive reactions becomes
applicable: the amplitude can be written as a convolution
of a hard-scattering quark-gluon amplitude Th and meson
distribution amplitudes φ(x, Q2) which describe the frac-
tional longitudinal momentum distribution amplitude of
the quark and antiquark in each meson.

In the present work we obtain the q2 dependences of
the form factors in the region 0 ≤ q2 ≤ M2

B/2 where the
large momentum transfers are involved for the interac-
tion between the quark and antiquark in the meson. Then
we find the pole types of the form factors in the limit of
mπ/MB = 0, mρ/MB = 0, Mb/MB = 1 and (1 − x) � 1.
The results show that F0 and A1 are of monopole type,
V , A0 and A2 of dipole type, and F1 of a combination of
monopole and dipole types with dipole type dominating.
These are different from those of Wirbel et al. [10] which
are assumed to be of monopole type for all form factors.
Determination of the pole types of form factors are phe-
nomenologically important. For example, the spectrum of
dΓ (B0 → π−l+ν)/dq2 is very sensitive to the pole type
of F1, and then the extraction of Vub from the branching
ratio B(B0 → π−l+ν) is very much dependent on whether
F1 is of monopole or of dipole type.

In Sect. 2 we study the form factors of B → π, FBπ
0 (q2)

and FBπ
1 (q2). In Sect. 3, those of B → ρ, V Bρ(q2), ABρ

1 (q2),
ABρ

2 (q2) and ABρ(q2), are calculated. We obtain in Sect. 4
the pole types of the form factors in the limit of mπ/MB =
0, mρ/MB = 0, Mb/MB = 1 and (1 − x) � 1. Sect. 5 con-
stitutes the conclusion.

2 Form factors F Bπ
0 (q2) and F Bπ

1 (q2)

From Lorentz invariance one finds the decomposition of
the hadronic matrix element for B → π transition in terms



664 D.S. Hwang, B.-H. Lee: Perturbative QCD analysis of B to π and B to ρ transitions

x

(1-x)

y

(1-y)

k

q

1

(a)

x y

(1-x) (1-y)

k

q

2

(b)
Fig. 1. Feynman diagrams to the first order
in αs

of hadronic form factors [10]:〈
π−(pπ)|V µ|B0(pB)

〉
= (pB + pπ)µfBπ

+ (q2) + (pB − pπ)µfBπ
− (q2)

=
(
rµ − m2

B − m2
π

q2 qµ
)

FBπ
1 (q2)

+
m2

B − m2
π

q2 qµ FBπ
0 (q2) , (1)

where V µ = ūγµb, qµ = (pB − pπ)µ, rµ = (pB + pπ)µ, and

FBπ
1 (q2) = fBπ

+ (q2) ,

FBπ
0 (q2) = fBπ

+ (q2) +
q2

M2
B − m2

π

fBπ
− (q2) . (2)

In the rest frame of the decay products, F1 and F0 corre-
spond to 1− and 0+ exchanges, respectively. At q2 = 0 we
have the constraint

FBπ
1 (0) = FBπ

0 (0), (3)

since the hadronic matrix element in (1) is nonsingular at
this kinematic point.

We calculate the B to π (heavy to light) transition ma-
trix element by using the PQCD factorization of exclusive
amplitudes at high momentum transfer and neglect all fi-
nal state interactions [8]. To the first order in αs = αs(Q2),
two Feynman diagrams in Fig. 1 give the following ampli-
tude:

〈
π−(pπ)|V µ|B0(pB)

〉
=

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dy φB(x)

×
[
Tr {(6 pπ + mπ)γ5γ

ν 6 k1γ
µ(6 pB + g(x)MB)γ5γν }

k2
1Q

2 +

Tr {(6 pπ + mπ)γ5γ
µ(6 k2 + Mb)γν(6 pB + g(x)MB)γ5γν}

(k2
2 − M2

b )Q2

]
×φπ(y) , (4)

where Qµ = (1−x)pµ
B − (1− y)pµ

π, kµ
1 = −(1−x)pµ

B + pµ
π,

kµ
2 = pµ

B − (1 − y)pµ
π, and

Q2 = M2
B

[
−(1 − x)(1 − y)

(
1 − q2

M2
B

)
+ (1 − x)2

+
(
(1 − y)2 − (1 − x)(1 − y)

) m2
π

M2
B

]
,

k2
1 = M2

B

[
−(1 − x)

(
1 − q2

M2
B

)

+(1 − x)2 + (1 − (1 − x))
m2

π

M2
B

]
,

k2
2 − M2

b = M2
B

[
−(1 − y)

(
1 − q2

M2
B

)
+
(

1 − M2
b

M2
B

)

−(1 − y)y
m2

π

M2
B

]
. (5)

Here, b̄ quark in the initial B0 and ū quark in the final π−
carry momenta xpB and ypπ, respectively, as denoted in
Fig. 1. In (4) g(x) is a phenomenologically introduced pa-
rameter for B meson wave function, and φπ(y) and φB(x)
are the distribution amplitudes for π and B mesons. Our
results of the q2 dependences of the form factors will not
depend on explicit forms of these distribution amplitudes.
Only for the numerical estimation of the form factor values
at q2 = 0 we will use the following distribution amplitudes
given by [8,9,11,12]

φπ(x) =

√
3
2

fπx(1 − x), (6)

φB(x) =
1

2
√

6
fB

ϕ(x)∫ 1
0 ϕ(x)dx

,

ϕ(x) =
x2(1 − x)2

[ε2x + (1 − x)2]2
, (7)

whose integrals are related to the meson decay constant
by ∫ 1

0
dx φM (x) =

1
2
√

6
fM . (8)

In the right hand sides of (7) and (8) there are extra fac-
tor 1√

2
compared with [8], since in this paper we adopt the

convention of the meson decay constant given by
〈0|Aµ|M(p)〉 = ifMpµ in which fπ ≡ fπ+ = 131.74 ± 0.15
MeV [13]. In (4) we took the upper limit of the integration
over momentum fraction y of a quark in the light meson
as 1 − ε, since the integration in the interval 1 − ε ≤ y ≤ 1
corresponds to the Drell-Yan-West [14] end-point region.
It gives only a small correction to the form factors, and
this region is also expected to be suppressed by a Sudakov
form factor [8]. Our determination of q2 dependences of
the form factors is not dependent on the exact range of
integration as we will see in (41) and (42) later.

After some calculations we have

〈
π−(pπ)|V µ|B0(pB)

〉
=

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dy φB(x) (9)
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×
[

K̄a

k2
1Q

2 +
K̄b

(k2
2 − M2

b )Q2

]
φπ(y),

where

K̄a = 4M2
B

{
rµ

[
−(1 − x)

q2

M2
B

− x2g
mπ

MB
− x

m2
π

M2
B

]
(10)

+qµ

[
(1 − x)

(
2 − q2

M2
B

)
+(2 − x)2g

mπ

MB
− x

m2
π

M2
B

]}
,

K̄b = 4M2
B

{
rµ

[(
2g

Mb

MB
− 1
)

+ (1 − y)
(
1 − q2

M2
B

)

+
(

Mb

MB
− y2g

)
mπ

MB

]
+ qµ

[
−
(

2g
Mb

MB
− 1
)

−(1 − y)
(

1 − q2

M2
B

)
+
(

Mb

MB
− (2 − y)2g

)
mπ

MB

−2(1 − y)
m2

π

M2
B

]}
.

Then from (1) and (10) we have

FBπ
1 (q2) =

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dy φB(x)

×
[

F̄ a
1

k2
1Q

2 +
F̄ b

1

(k2
2 − M2

b )Q2

]
φπ(y), (11)

F̄ a
1 = 4M2

B

[
−(1 − x)

q2

M2
B

− x2g
mπ

MB
− x

m2
π

M2
B

]
,

F̄ b
1 = 4M2

B

[(
2g

Mb

MB
− 1
)

+ (1 − y)
(

1 − q2

M2
B

)

+
(

Mb

MB
− y2g

)
mπ

MB

]
,

and

FBπ
0 (q2) =

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dy φB(x)

×
[

F̄ a
0

k2
1Q

2 +
F̄ b

0

(k2
2 − M2

b )Q2

]
φπ(y) , (12)

F̄ a
0 = 4M2

B

[[
−(1 − x)

q2

M2
B

− x2g
mπ

MB
− x

m2
π

M2
B

]

+
q2

M2
B − m2

π

[
(1 − x)

(
2 − q2

M2
B

)

+(2 − x)2g
mπ

MB
−x

m2
π

M2
B

]]
,

F̄ b
0 = 4M2

B

[[(
2g

Mb

MB
− 1
)

+ (1 − y)
(

1 − q2

M2
B

)

+
(

Mb

MB
− y2g

)
mπ

MB

]
+

q2

M2
B − m2

π[
−
(

2g
Mb

MB
− 1
)

− (1 − y)
(

1 − q2

M2
B

)

+
(

Mb

MB
− (2 − y)2g

)
mπ

MB
− 2(1 − y)

m2
π

M2
B

]]
.

For mπ = 0, we have

Q2 = M2
B

[
−(1 − x)(1 − y)

(
1 − q2

M2
B

)
+ (1 − x)2

]
,

k2
1 = M2

B

[
−(1 − x)

(
1 − q2

M2
B

)
+ (1 − x)2

]
,

k2
2 − M2

b = M2
B

[
−(1 − y)

(
1 − q2

M2
B

)
+
(
1 − M2

b

M2
B

)]
, (13)

F̄ a
1 = 4M2

B

[
−(1 − x)

q2

M2
B

]
, (14)

F̄ b
1 = 4M2

B

[(
2g

Mb

MB
− 1
)

+ (1 − y)
(

1 − q2

M2
B

)]
,

and

F̄ a
0 = 4M2

B

[
(1 − x)

q2

M2
B

(
1 − q2

M2
B

)]
, (15)

F̄ b
0 = 4M2

B

[[(
2g

Mb

MB
− 1
)

+ (1 − y)
(

1 − q2

M2
B

)]

×
(

1 − q2

M2
B

)]
.

Then, in the limit of mπ/MB = 0, Mb/MB = 1 and
(1 − x) � 1, from (11) and (12) we have

FBπ
1,0 (q2) =

32παs

3M2
B

∫ 1

0
dx

∫ 1−ε

0
dy φB(x) φπ(y)

× 1
(1 − x)(1 − y)2

f1,0, (16)

where

f1 = 2(1 − y)
1

1 − q2

M2
B

+ [(2g − 1) − (1 − y)]
1(

1 − q2

M2
B

)2 , (17)

f0 = [(2g − 1) + (1 − y)]
1

1 − q2

M2
B

. (18)

The above results show that FBπ
0 (q2) is of monopole type

and FBπ
1 (q2) of a combination of monopole and dipole

types. The approximations mπ/MB = 0, mρ/MB = 0
and Mb/MB = 1 are reasonable ones, since the B meson
mass is much larger than the masses of light mesons or
light quarks. For the B meson, it is expected that the
momentum fraction of the light quark, 1− x, is small and
roughly given by mlight/MB . Therefore the distribution
amplitude φB(x) of B meson has a sharp peak at 1 −
x ∼ mlight/MB , whose value is roughly ε for φB(x) given
by (7). Then, when we integrate over x, only the range
1−x � 1 contributes dominantly. For this dominant range
of x, the first terms of Q2 and k2

1 in (13) are much larger
than the second terms, (1 − x)2, as far as 1 − q2

M2
B

is not
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very small. For this reason, we restrict the range of q2 as
0 ≤ q2 ≤ M2

B/2, and then the approximation (1 − x) � 1
can be applied in the integrand safely.

From (13), Q2 is roughly given by −1
2εM2

B(1 − q2

M2
B

).

Then, for 0 ≤ q2 ≤ M2
B/2, the rough range of Q2 values

is between 0.38 and 0.75 GeV2, which is still much larger
than Λ2

QCD, and hence this is in the perturbative regime.
Numerically, the αs(Q2) is around 0.38 within 10% in this
range [15].

3 Form factors V Bρ(q2), ABρ
1 (q2), ABρ

2 (q2)
and ABρ(q2)

From Lorentz invariance one finds the decomposition of
the hadronic matrix element for B → ρ transition in terms
of hadronic form factors [10]:〈

ρ−(pρ, ε)|(V − A)µ|B0(pB)
〉

(19)

=
2V (q2)

MB + mρ
iεµαβγε∗αpβ

Bpγ
ρ − (MB + mρ)ε∗µA1(q2)

+
(ε∗ · pB)
MB + mρ

(pB + pρ)µA2(q2) − 2mρ
(ε∗ · pB)

q2 qµA(q2).

The form factor A(q2) can be written as

A(q2) = A0(q2) − A3(q2), where

A3(q2) =
MB + mρ

2mρ
A1(q2) − MB − mρ

2mρ
A2(q2) , (20)

and at q2 = 0 we have the constraint

A0(0) = A3(0) . (21)

We calculate the B to ρ (heavy to light) transition ma-
trix element by using the PQCD factorization of exclusive
amplitudes at high momentum transfer and neglect all fi-
nal state interactions [8]. To the first order in αs = αs(Q2),
two Feynman diagrams in Fig. 1 give the following ampli-
tude:

〈
ρ−(pρ, ε)|V µ|B0(pB)

〉
=

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dy φB(x)

×
[
Tr{(6 pρ + mρ)6 εγν 6 k1γ

µ(6 pB + g(x)MB)γ5γν}
k2
1Q

2

+
Tr{(6 pρ + mρ)6 εγµ(6 k2 + Mb)γν(6 pB + g(x)MB)γ5γν}

(k2
2 − M2

b )Q2

]
×φρ(y) , (22)

where V µ = ūγµb, Qµ = (1 − x)pµ
B − (1 − y)pµ

ρ , kµ
1 =

−(1 − x)pµ
B + pµ

ρ , kµ
2 = pµ

B − (1 − y)pµ
ρ , and Q2, k2

1 and
k2
2 − M2

b are given by (5) with mπ replaced by mρ.
In (22) φρ(y) is the distribution amplitude for ρ meson.

Our results of the q2 dependences of the form factors will
not depend on explicit forms of this distribution ampli-
tudes. When we do the numerical estimation of the form

factor values at q2 = 0, we will use the following distribu-
tion amplitude given by [8,9,11,12]

φρ(x) =

√
3
2

fρx(1 − x), (23)

where 〈0|V µ|ρ(ε)〉 = fρmρε
µ in which fρ ≡ fρ+ = 216 ± 5

MeV [13]. In reality, the longitudinally and transversely
polarized ρ mesons do not have the same distribution am-
plitude [16]. We do not take this difference into account
in this work for simplicity, and the pole types of the form
factors are not affected by this difference.

After some calculations we have〈
ρ−(pρ, ε)|V µ|B0(pB)

〉
=

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dy φB(x)

×
[

V̄ a

k2
1Q

2 +
V̄ b

(k2
2 − M2

b )Q2

]
φρ(y) , (24)

where

V̄ a = 8MB
mρ

MB
iεµαβγε∗αpβ

Bpγ
ρ ,

V̄ b = 8MB

(
−
(

2g − Mb

MB

)
− (1 − y)

mρ

MB

)
×iεµαβγε∗αpβ

Bpγ
ρ , (25)

[
V̄ a

k2
1Q

2 +
V̄ b

(k2
2 − M2

b )Q2

]

= 8MBiεµαβγε∗αpβ
Bpγ

ρ

[
1

k2
1Q

2

mρ

MB
(26)

+
1

(k2
2 − M2

b )Q2

(
−
(

2g − Mb

MB

)
− (1 − y)

mρ

MB

)]
.

To the first order in αs = αs(Q2) we have

〈
ρ−(pρ, ε)|Aµ|B0(pB)

〉
=

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dy φB(x)

×
[
Tr{(6 pρ + mρ)6 εγν 6 k1γ

µγ5(6 pB + g(x)MB)γ5γν}
k2
1Q

2 +

Tr{(6 pρ + mρ)6 εγµγ5(6 k2 + Mb)γν(6 pB + g(x)MB)γ5γν}
(k2

2 − M2
b )Q2

]
×φρ(y) , (27)

where Aµ = ūγµγ5b. After some calculations we have〈
ρ−(pρ, ε)|Aµ|B0(pB)

〉
=

8παs

3

∫ 1

0
dx

∫ 1−ε

0
dyφB(x)

×
[

Āa

k2
1Q

2 +
Āb

(k2
2 − M2

b )Q2

]
φρ(y) , (28)

where

Āa = ε∗µM2
B4mρ

(
−
(

1 − q2

M2
B

)
+ 2(1 − x) − m2

ρ

M2
B

)
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+(ε∗ · pB)rµ4mρ(1 − 2(1 − x))
+(ε∗ · pB)qµ4mρ(−1 − 2(1 − x)) , (29)

Āb = ε∗µ4M3
B

[((
2g − Mb

MB

)
− (1 − y)

mρ

MB

)(
1 − q2

M2
B

)

−2
(

2g
Mb

MB
− 1
)

mρ

MB

+
((

2g − Mb

MB

)
− 4g(1 − y)

)
m2

ρ

M2
B

− (1 − y)
m3

ρ

M3
B

]

+(ε∗ · pB)rµ4MB

(
−
(

2g − Mb

MB

)
− (1 − y)

mρ

MB

)
+(ε∗ · pB)qµ4MB(−1)

×
(

−
(

2g − Mb

MB

)
− (1 − y)

mρ

MB

)
,

[
Āa

k2
1Q

2 +
Āb

(k2
2 − M2

b )Q2

]

= 4M3
B

{
ε∗µ

[
1

k2
1Q

2

mρ

MB

(
−
(

1 − q2

M2
B

)

+2(1 − x) − m2
ρ

M2
B

)
+

1
(k2

2 − M2
b )Q2

×
[((

2g − Mb

MB

)
− (1 − y)

mρ

MB

)(
1 − q2

M2
B

)

−2
(

2g
Mb

MB
− 1
)

mρ

MB
+
((

2g − Mb

MB

)

− 4g(1 − y))
m2

ρ

M2
B

− (1 − y)
m3

ρ

M3
B

]]
+

(ε∗ · pB)rµ

M2
B

×
[

1
k2
1Q

2

mρ

MB
(1 − 2(1 − x)) +

1
(k2

2 − M2
b )Q2

×
(

−
(

2g − Mb

MB

)
− (1 − y)

mρ

MB

)]
+

(ε∗ · pB) qµ

M2
B

×
[

1
k2
1Q

2

mρ

MB
(−1 − 2(1 − x)) +

1
(k2

2 − M2
b )Q2 (−1)

×
(

−
(

2g − Mb

MB

)
− (1 − y)

mρ

MB

)]}
. (30)

For mρ = 0, Q2, k2
1 and k2

2 − M2
b are given by (13),

and we have[
V̄ a

k2
1Q

2 +
V̄ b

(k2
2 − M2

b )Q2

]
=

V̄ b

(k2
2 − M2

b )Q2 (31)

= 8MBiεµαβγε∗αpβ
Bpγ

ρ

1
(k2

2 − M2
b )Q2

(
2g − Mb

MB

)
(−1) ,

and[
Āa

k2
1Q

2 +
Āb

(k2
2 − M2

b )Q2

]
=

Āb

(k2
2 − M2

b )Q2

= 4M3
B

1
(k2

2 − M2
b )Q2

(
2g − Mb

MB

)
(32)

×
{

ε∗µ

(
1 − q2

M2
B

)
+

(ε∗ · pB) rµ

M2
B

(−1) +
(ε∗ · pB) qµ

M2
B

}
.

4 Relations among form factors in the limit
of mπ/MB = 0, mρ/MB = 0, Mb/MB = 1
and (1 − x) � 1

In this section we study the form factors FBπ
0 (q2) and

FBπ
1 (q2) of B → π, and V Bρ(q2), ABρ

0 (q2), ABρ
1 (q2) and

ABρ
2 (q2) of B → ρ, in the limit of mπ/MB = 0, mρ/MB =

0, Mb/MB = 1 and (1 − x) � 1. The approximations
mπ/MB = 0, mρ/MB = 0 and Mb/MB = 1 are reasonable
ones, since the B meson mass is much larger than the
masses of light mesons or light quarks. (1 − x) � 1 is also
a good approximation in the region 0 ≤ q2 ≤ M2

B/2 as
can be seen from (5), since (1−x) is roughly given by the
ratio of light and b quark masses or roughly by the value
of the parameter ε in the B meson distribution amplitude
(7).

From (16)−(19) and (32)−(33), we can organize the
form factors as follows:

Fi(q2) =
32παs

3M2
B

∫ 1

0
dx

∫ 1−ε

0
dy φB(x) φi(y)

× 1
(1 − x)(1 − y)2

fi , (33)

where Fi=F0,F1,V ,A0,A1,A2, and φi(y) = φπ(y) for F0
and F1, and φi(y) = φρ(y) for V , A0, A1 and A2. In (33)
fi are given by

f0 = [(2g − 1) + (1 − y)]
1
z

, (34)

f1 = 2(1 − y)
1
z

+ [(2g − 1) − (1 − y)]
1
z2 , (35)

v = (−1)(2g − 1)
1
z2 , (36)

a1 = (2g − 1)
1
z

, (37)

a2 = (2g − 1)
1
z2 , (38)

a =
q2

2mρMB
(2g − 1)

1
z2 , (39)

where z ≡ 1 − q2

M2
B

. By taking the terms up to the first
order in mρ/MB for a1, a2 and a in (29) and (30), we
obtain from the relations (20):

a0 = (−1)[(2g − 1) + (1 − y)]
1
z2 . (40)

The q2 dependences of the form factors are given by
(33)−(40). We obtain them in the region 0 ≤ q2 ≤ M2

B/2,
and present the results in Fig. 2. The formulas in (33)−(40)
can be organized as

F0(q2) = (aπ + bπ)
1
z

, F1(q2) = 2bπ
1
z

+ (aπ − bπ)
1
z2 ,



668 D.S. Hwang, B.-H. Lee: Perturbative QCD analysis of B to π and B to ρ transitions

0 0.1 0.2 0.3 0.4 0.5
q

2
/MB

2

0.2

0.4

0.6

0.8

1

1.2

1.4

F1

F0

A2=−V
A1

−A0

Fig. 2. The q2 dependences of the form fac-
tors. F0(q2) and A1(q2) have the simple pole de-
pendence, and A2(q2), V (q2) and A0(q2) have
the dipole dependence. F1(q2) has the mixture of
the simple pole and dipole dependences, but the
dipole dependence is dominant

A1(q2) = aρ
1
z

, A2(q2) = −V (q2) = aρ
1
z2 ,

−A0(q2) = (aρ + bρ)
1
z2 , (41)

where

ai =
32παs

3M2
B

∫ 1

0
dx

∫ 1−ε

0
dy φB(x) φi(y)

× 2g − 1
(1 − x)(1 − y)2

, (42)

bi =
32παs

3M2
B

∫ 1

0
dx

∫ 1−ε

0
dy φB(x) φi(y)

1
(1 − x)(1 − y)

with i = π or ρ.
We emphasize that the q2 dependences of the form

factors given in (41) are independent of the shapes of the
distribution amplitudes φB(x), φπ(y), φρ(y) and the value
of the parameter ε, as previously mentioned. Their depen-
dences appear only in the values of the constants ai and bi

in (42), which affect the normalizations of the form factors.
From (41) we find that F0(q2) and A1(q2) have the simple
pole q2 dependence, and A2(q2), V (q2) and A0(q2) have
the dipole q2 dependence. F1(q2) has the mixture of the
simple pole and dipole q2 dependences, but the dipole q2

dependence is dominant. Our main results of this paper is
the determination of these pole types of the form factors,
and these results are independent of the normalizations of
the form factors.

From (41) we find the relations among the form factors:

F1
(
q2) = F0

(
q2)(2 − 1

z

)
+ 2

aπ

aρ
A1
(
q2)(−1 +

1
z

)
(43)

F0
(
q2) 1

z
= −aπ + bπ

aρ + bρ
A0
(
q2) (44)

A1
(
q2) 1

z
= A2(q2) = −V (q2) . (45)

At q2 = 0, (43)−(45) lead to the following relations:

F1(0) = F0(0) = −aπ + bπ

aρ + bρ
A0(0) ,

A1(0) = A2(0) = −V (0) . (46)

Ball and Braun also obtained the second relation in (46) to
their accuracy in their QCD sum rule calculation [17]. We
calculate F1(0) and A1(0) from (41) and (42). In this cal-
culation we took g = 1, αs = 0.38 [8], and fB = 0.2 GeV.
F1(0) and A1(0) depend on the value of ε. The commonly
used value F1(0) = 0.33 obtained by Wirbel et al. [10] in
quark model corresponds to ε = 0.022, when we use the
φπ(x) and φB(x) given in (6) and (7). Then, when we use
φπ(x) and φρ(x) given in (6) and (23) with ε = 0.022, we
obtain aπ = (fπ/fρ)aρ = 0.28 and bπ = (fπ/fρ)bρ = 0.05.
These results give A1(0) = 0.47 from (41), and the values
of other form factors at q2 = 0 can be obtained from the
relations in (46).

5 Conclusion

We calculated the form factors of B → π and B → ρ heavy
to light transition matrix elements by using the factoriza-
tion formalism of perturbative QCD. We obtained the q2

dependences of the form factors in the region 0 ≤ q2 ≤
M2

B/2, since we can consider that in this region the large
momentum transfers are involved for the interaction be-
tween the quark and antiquark in the meson. We found the
pole types of the form factors in the limit of mπ/MB = 0,
mρ/MB = 0, Mb/MB = 1 and (1 − x) � 1. These condi-
tions are reasonable ones since the B meson mass is much
larger than the masses of light mesons or light quarks, and
(1 − x) is roughly given by the ratio of light and b quark
masses.
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For the heavy to heavy transitions like B → D(∗),
HQET can be applied and all the relevant form factors
are expressed by the one Isgur-Wise function [5]. How-
ever, for heavy to light transitions like B → π and B → ρ,
we cannot apply HQET, and it is very important to un-
derstand the form factors of heavy to light transitions bet-
ter. Improvements in this area of study are not only in-
valuable for the analyses of experimental data, for exam-
ple, in the extraction of the CKM matrix elements from
the experimental results of the B meson decay branch-
ing ratios, but also for the better understanding of the
structures of mesons. Stech studied the form factors of
heavy to light transitions in the latter context [18]. In
the factorization formalism of perturbative QCD we ob-
tained the relations among the q2 dependent form factors
in (43)−(45), and the relations (46) at q2 = 0. The second
relaton A1(0) = A2(0) = −V (0) in (46) was also obtained
by Ball and Braun in their QCD sum rule calculation
[17]. In the first relation F1(0) = F0(0) = −aπ+bπ

aρ+bρ
A0(0)

in (46), the first equality is a well-known relation as ex-
plained in (3), however, the second equality is not a usual
one. When we use φπ(x) and φρ(x) given in (6) and (23),
the second equality becomes F1(0) = − fπ

fρ
A0(0), which

can be checked by measuring the differential branching
ratios dB(B0 → π−l+ν)/dq2 and dB(B0 → ρ−l+ν)/dq2

at q2 = 0, which are given by

dB(B0 → π−l+ν)
dq2 |q2=0

=
G2

F M5
B |Vub|2

192π3ΓB

(
1 − m2

π

M2
B

)3

|F1(0)|2 , (47)

dB(B0 → ρ−l+ν)
dq2 |q2=0

=
G2

F M5
B |Vub|2

192π3ΓB

(
1 − m2

ρ

M2
B

)3

|A0(0)|2 . (48)

From (47) and (48) we have

dB(B0 → π−l+ν)/dq2|q2=0

dB(B0 → ρ−l+ν)/dq2|q2=0

=

(
1 − m2

π

M2
B

)3

(
1 − m2

ρ

M2
B

)3
|F1(0)|2
|A0(0)|2 = 1.06

|F1(0)|2
|A0(0)|2 . (49)

CLEO reported [7] B(B0 → π−l+ν) = (1.8 ± 0.4 ± 0.3 ±
0.2)× 10−4 and B(B0 → ρ−l+ν) = (2.5± 0.4 +0.5

−0.7 ± 0.5)×
10−4. Then we expect that the ratio in the left hand side
of (49) will be measured in near future, which will provide
the ratio |F1(0)|/|A0(0)|.

We obtained the pole types of the form factors given
by (41) and (42). We note that they are independent of the
shapes of the distribution amplitudes φB(x), φπ(y), φρ(y)
and the value of the parameter ε. Their dependences ap-
pear only in the numerical values of the constants ai and
bi in (42), which affect the normalizations of the form fac-
tors. The formulas in (41) show that F0(q2) and A1(q2)

have the simple pole q2 dependence, and A2(q2), V (q2)
and A0(q2) have the dipole q2 dependence. F1(q2) has the
mixture of the simple pole and dipole q2 dependences, but
the dipole q2 dependence is dominant. These results have
been possible since in the case of the B meson decaying
into π or ρ meson with q2 in the range of 0 ≤ q2 ≤ M2

B/2,
large momentum transfers are involved, and the factoriza-
tion formula of perturbative QCD for exclusive reactions
becomes applicable. Therefore, the heavy to light decays
possess their own characteristic and interesting properties
whose deeper understandings are desirable.
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